1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
//! A concurrent work-stealing deque. //! //! The data structure can be thought of as a dynamically growable and shrinkable buffer that has //! two ends: bottom and top. A [`Deque`] can [`push`] elements into the bottom and [`pop`] //! elements from the bottom, but it can only [`steal`][Deque::steal] elements from the top. //! //! A [`Deque`] doesn't implement `Sync` so it cannot be shared among multiple threads. However, it //! can create [`Stealer`]s, and those can be easily cloned, shared, and sent to other threads. //! [`Stealer`]s can only [`steal`][Stealer::steal] elements from the top. //! //! Here's a visualization of the data structure: //! //! ```text //! top //! _ //! Deque::steal -> | | <- Stealer::steal //! | | //! | | //! | | //! Deque::push/pop -> |_| //! //! bottom //! ``` //! //! # Work-stealing schedulers //! //! Usually, the data structure is used in work-stealing schedulers as follows. //! //! There is a number of threads. Each thread owns a [`Deque`] and creates a [`Stealer`] that is //! shared among all other threads. Alternatively, it creates multiple [`Stealer`]s - one for each //! of the other threads. //! //! Then, all threads are executing in a loop. In the loop, each one attempts to [`pop`] some work //! from its own [`Deque`]. But if it is empty, it attempts to [`steal`][Stealer::steal] work from //! some other thread instead. When executing work (or being idle), a thread may produce more work, //! which gets [`push`]ed into its [`Deque`]. //! //! Of course, there are many variations of this strategy. For example, sometimes it may be //! beneficial for a thread to always [`steal`][Deque::steal] work from the top of its deque //! instead of calling [`pop`] and taking it from the bottom. //! //! # Examples //! //! ``` //! use crossbeam_deque::{Deque, Steal}; //! use std::thread; //! //! let d = Deque::new(); //! let s = d.stealer(); //! //! d.push('a'); //! d.push('b'); //! d.push('c'); //! //! assert_eq!(d.pop(), Some('c')); //! drop(d); //! //! thread::spawn(move || { //! assert_eq!(s.steal(), Steal::Data('a')); //! assert_eq!(s.steal(), Steal::Data('b')); //! }).join().unwrap(); //! ``` //! //! # References //! //! The implementation is based on the following work: //! //! 1. [Chase and Lev. Dynamic circular work-stealing deque. SPAA 2005.][chase-lev] //! 2. [Le, Pop, Cohen, and Nardelli. Correct and efficient work-stealing for weak memory models. //! PPoPP 2013.][weak-mem] //! 3. [Norris and Demsky. CDSchecker: checking concurrent data structures written with C/C++ //! atomics. OOPSLA 2013.][checker] //! //! [chase-lev]: https://dl.acm.org/citation.cfm?id=1073974 //! [weak-mem]: https://dl.acm.org/citation.cfm?id=2442524 //! [checker]: https://dl.acm.org/citation.cfm?id=2509514 //! //! [`Deque`]: struct.Deque.html //! [`Stealer`]: struct.Stealer.html //! [`push`]: struct.Deque.html#method.push //! [`pop`]: struct.Deque.html#method.pop //! [Deque::steal]: struct.Deque.html#method.steal //! [Stealer::steal]: struct.Stealer.html#method.steal extern crate crossbeam_epoch as epoch; extern crate crossbeam_utils as utils; use std::fmt; use std::marker::PhantomData; use std::mem; use std::ptr; use std::sync::Arc; use std::sync::atomic::{self, AtomicIsize}; use std::sync::atomic::Ordering::{Acquire, Relaxed, Release, SeqCst}; use epoch::{Atomic, Owned}; use utils::cache_padded::CachePadded; /// Minimum buffer capacity for a deque. const DEFAULT_MIN_CAP: usize = 16; /// If a buffer of at least this size is retired, thread-local garbage is flushed so that it gets /// deallocated as soon as possible. const FLUSH_THRESHOLD_BYTES: usize = 1 << 10; /// Possible outcomes of a steal operation. #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)] pub enum Steal<T> { /// The deque was empty at the time of stealing. Empty, /// Some data has been successfully stolen. Data(T), /// Lost the race for stealing data to another concurrent operation. Try again. Retry, } /// A buffer that holds elements in a deque. struct Buffer<T> { /// Pointer to the allocated memory. ptr: *mut T, /// Capacity of the buffer. Always a power of two. cap: usize, } unsafe impl<T> Send for Buffer<T> {} impl<T> Buffer<T> { /// Returns a new buffer with the specified capacity. fn new(cap: usize) -> Self { debug_assert_eq!(cap, cap.next_power_of_two()); let mut v = Vec::with_capacity(cap); let ptr = v.as_mut_ptr(); mem::forget(v); Buffer { ptr: ptr, cap: cap, } } /// Returns a pointer to the element at the specified `index`. unsafe fn at(&self, index: isize) -> *mut T { // `self.cap` is always a power of two. self.ptr.offset(index & (self.cap - 1) as isize) } /// Writes `value` into the specified `index`. unsafe fn write(&self, index: isize, value: T) { ptr::write(self.at(index), value) } /// Reads a value from the specified `index`. unsafe fn read(&self, index: isize) -> T { ptr::read(self.at(index)) } } impl<T> Drop for Buffer<T> { fn drop(&mut self) { unsafe { drop(Vec::from_raw_parts(self.ptr, 0, self.cap)); } } } /// Internal data that is shared between the deque and its stealers. struct Inner<T> { /// The bottom index. bottom: AtomicIsize, /// The top index. top: AtomicIsize, /// The underlying buffer. buffer: Atomic<Buffer<T>>, /// Minimum capacity of the buffer. Always a power of two. min_cap: usize, } impl<T> Inner<T> { /// Returns a new `Inner` with default minimum capacity. fn new() -> Self { Self::with_min_capacity(DEFAULT_MIN_CAP) } /// Returns a new `Inner` with minimum capacity of `min_cap` rounded to the next power of two. fn with_min_capacity(min_cap: usize) -> Self { let power = min_cap.next_power_of_two(); assert!(power >= min_cap, "capacity too large: {}", min_cap); Inner { bottom: AtomicIsize::new(0), top: AtomicIsize::new(0), buffer: Atomic::new(Buffer::new(power)), min_cap: power, } } /// Resizes the internal buffer to the new capacity of `new_cap`. #[cold] unsafe fn resize(&self, new_cap: usize) { // Load the bottom, top, and buffer. let b = self.bottom.load(Relaxed); let t = self.top.load(Relaxed); let buffer = self.buffer.load(Relaxed, epoch::unprotected()); // Allocate a new buffer. let new = Buffer::new(new_cap); // Copy data from the old buffer to the new one. let mut i = t; while i != b { ptr::copy_nonoverlapping(buffer.deref().at(i), new.at(i), 1); i = i.wrapping_add(1); } let guard = &epoch::pin(); // Replace the old buffer with the new one. let old = self.buffer .swap(Owned::new(new).into_shared(guard), Release, guard); // Destroy the old buffer later. guard.defer(move || old.into_owned()); // If the buffer is very large, then flush the thread-local garbage in order to // deallocate it as soon as possible. if mem::size_of::<T>() * new_cap >= FLUSH_THRESHOLD_BYTES { guard.flush(); } } } impl<T> Drop for Inner<T> { fn drop(&mut self) { // Load the bottom, top, and buffer. let b = self.bottom.load(Relaxed); let t = self.top.load(Relaxed); unsafe { let buffer = self.buffer.load(Relaxed, epoch::unprotected()); // Go through the buffer from top to bottom and drop all elements in the deque. let mut i = t; while i != b { ptr::drop_in_place(buffer.deref().at(i)); i = i.wrapping_add(1); } // Free the memory allocated by the buffer. drop(buffer.into_owned()); } } } /// A concurrent work-stealing deque. /// /// A deque has two ends: bottom and top. Elements can be [`push`]ed into the bottom and [`pop`]ped /// from the bottom. The top end is special in that elements can only be stolen from it using the /// [`steal`][Deque::steal] method. /// /// # Stealers /// /// While [`Deque`] doesn't implement `Sync`, it can create [`Stealer`]s using the method /// [`stealer`][stealer], and those can be easily shared among multiple threads. [`Stealer`]s can /// only [`steal`][Stealer::steal] elements from the top end of the deque. /// /// # Capacity /// /// The data structure is dynamically grows as elements are inserted and removed from it. If the /// internal buffer gets full, a new one twice the size of the original is allocated. Similarly, /// if it is less than a quarter full, a new buffer half the size of the original is allocated. /// /// In order to prevent frequent resizing (reallocations may be costly), it is possible to specify /// a large minimum capacity for the deque by calling [`Deque::with_min_capacity`]. This /// constructor will make sure that the internal buffer never shrinks below that size. /// /// # Examples /// /// ``` /// use crossbeam_deque::{Deque, Steal}; /// /// let d = Deque::with_min_capacity(1000); /// let s = d.stealer(); /// /// d.push('a'); /// d.push('b'); /// d.push('c'); /// /// assert_eq!(d.pop(), Some('c')); /// assert_eq!(d.steal(), Steal::Data('a')); /// assert_eq!(s.steal(), Steal::Data('b')); /// ``` /// /// [`Deque`]: struct.Deque.html /// [`Stealer`]: struct.Stealer.html /// [`push`]: struct.Deque.html#method.push /// [`pop`]: struct.Deque.html#method.pop /// [stealer]: struct.Deque.html#method.stealer /// [`Deque::with_min_capacity`]: struct.Deque.html#method.with_min_capacity /// [Deque::steal]: struct.Deque.html#method.steal /// [Stealer::steal]: struct.Stealer.html#method.steal pub struct Deque<T> { inner: Arc<CachePadded<Inner<T>>>, _marker: PhantomData<*mut ()>, // !Send + !Sync } unsafe impl<T: Send> Send for Deque<T> {} impl<T> Deque<T> { /// Returns a new deque. /// /// The internal buffer is destructed as soon as the deque and all its stealers get dropped. /// /// # Examples /// /// ``` /// use crossbeam_deque::Deque; /// /// let d = Deque::<i32>::new(); /// ``` pub fn new() -> Deque<T> { Deque { inner: Arc::new(CachePadded::new(Inner::new())), _marker: PhantomData, } } /// Returns a new deque with the specified minimum capacity. /// /// If the capacity is not a power of two, it will be rounded up to the next one. /// /// # Examples /// /// ``` /// use crossbeam_deque::Deque; /// /// // The minimum capacity will be rounded up to 1024. /// let d = Deque::<i32>::with_min_capacity(1000); /// ``` pub fn with_min_capacity(min_cap: usize) -> Deque<T> { Deque { inner: Arc::new(CachePadded::new(Inner::with_min_capacity(min_cap))), _marker: PhantomData, } } /// Returns `true` if the deque is empty. /// /// # Examples /// /// ``` /// use crossbeam_deque::Deque; /// /// let d = Deque::new(); /// assert!(d.is_empty()); /// d.push("foo"); /// assert!(!d.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns the number of elements in the deque. /// /// # Examples /// /// ``` /// use crossbeam_deque::Deque; /// /// let d = Deque::new(); /// d.push('a'); /// d.push('b'); /// d.push('c'); /// assert_eq!(d.len(), 3); /// ``` pub fn len(&self) -> usize { let b = self.inner.bottom.load(Relaxed); let t = self.inner.top.load(Relaxed); b.wrapping_sub(t) as usize } /// Pushes an element into the bottom of the deque. /// /// If the internal buffer is full, a new one twice the capacity of the current one will be /// allocated. /// /// # Examples /// /// ``` /// use crossbeam_deque::Deque; /// /// let d = Deque::new(); /// d.push(1); /// d.push(2); /// ``` pub fn push(&self, value: T) { unsafe { // Load the bottom, top, and buffer. The buffer doesn't have to be epoch-protected // because the current thread (the worker) is the only one that grows and shrinks it. let b = self.inner.bottom.load(Relaxed); let t = self.inner.top.load(Acquire); let mut buffer = self.inner.buffer.load(Relaxed, epoch::unprotected()); // Calculate the length of the deque. let len = b.wrapping_sub(t); // Is the deque full? let cap = buffer.deref().cap; if len >= cap as isize { // Yes. Grow the underlying buffer. self.inner.resize(2 * cap); buffer = self.inner.buffer.load(Relaxed, epoch::unprotected()); } // Write `value` into the right slot and increment `b`. buffer.deref().write(b, value); atomic::fence(Release); self.inner.bottom.store(b.wrapping_add(1), Relaxed); } } /// Pops an element from the bottom of the deque. /// /// If the internal buffer is less than a quarter full, a new buffer half the capacity of the /// current one will be allocated. /// /// # Examples /// /// ``` /// use crossbeam_deque::Deque; /// /// let d = Deque::new(); /// d.push(1); /// d.push(2); /// /// assert_eq!(d.pop(), Some(2)); /// assert_eq!(d.pop(), Some(1)); /// assert_eq!(d.pop(), None); /// ``` pub fn pop(&self) -> Option<T> { // Load the bottom. let b = self.inner.bottom.load(Relaxed); // If the deque is empty, return early without incurring the cost of a SeqCst fence. let t = self.inner.top.load(Relaxed); if b.wrapping_sub(t) <= 0 { return None; } // Decrement the bottom. let b = b.wrapping_sub(1); self.inner.bottom.store(b, Relaxed); // Load the buffer. The buffer doesn't have to be epoch-protected because the current // thread (the worker) is the only one that grows and shrinks it. let buf = unsafe { self.inner.buffer.load(Relaxed, epoch::unprotected()) }; atomic::fence(SeqCst); // Load the top. let t = self.inner.top.load(Relaxed); // Compute the length after the bottom was decremented. let len = b.wrapping_sub(t); if len < 0 { // The deque is empty. Restore the bottom back to the original value. self.inner.bottom.store(b.wrapping_add(1), Relaxed); None } else { // Read the value to be popped. let mut value = unsafe { Some(buf.deref().read(b)) }; // Are we popping the last element from the deque? if len == 0 { // Try incrementing the top. if self.inner .top .compare_exchange(t, t.wrapping_add(1), SeqCst, Relaxed) .is_err() { // Failed. We didn't pop anything. mem::forget(value.take()); } // Restore the bottom back to the original value. self.inner.bottom.store(b.wrapping_add(1), Relaxed); } else { // Shrink the buffer if `len` is less than one fourth of `self.inner.min_cap`. unsafe { let cap = buf.deref().cap; if cap > self.inner.min_cap && len < cap as isize / 4 { self.inner.resize(cap / 2); } } } value } } /// Steals an element from the top of the deque. /// /// Unlike most methods in concurrent data structures, if another operation gets in the way /// while attempting to steal data, this method will return immediately with [`Steal::Retry`] /// instead of retrying. /// /// If the internal buffer is less than a quarter full, a new buffer half the capacity of the /// current one will be allocated. /// /// # Examples /// /// ``` /// use crossbeam_deque::{Deque, Steal}; /// /// let d = Deque::new(); /// d.push(1); /// d.push(2); /// /// // Attempt to steal an element. /// // /// // No other threads are working with the deque, so this time we know for sure that we /// // won't get `Steal::Retry` as the result. /// assert_eq!(d.steal(), Steal::Data(1)); /// /// // Attempt to steal an element, but keep retrying if we get `Retry`. /// loop { /// match d.steal() { /// Steal::Empty => panic!("should steal something"), /// Steal::Data(data) => { /// assert_eq!(data, 2); /// break; /// } /// Steal::Retry => {} /// } /// } /// ``` /// /// [`Steal::Retry`]: enum.Steal.html#variant.Retry pub fn steal(&self) -> Steal<T> { let b = self.inner.bottom.load(Relaxed); let buf = unsafe { self.inner.buffer.load(Relaxed, epoch::unprotected()) }; let t = self.inner.top.load(Relaxed); let len = b.wrapping_sub(t); // Is the deque empty? if len <= 0 { return Steal::Empty; } // Try incrementing the top to steal the value. if self.inner .top .compare_exchange(t, t.wrapping_add(1), SeqCst, Relaxed) .is_ok() { let data = unsafe { buf.deref().read(t) }; // Shrink the buffer if `len - 1` is less than one fourth of `self.inner.min_cap`. unsafe { let cap = buf.deref().cap; if cap > self.inner.min_cap && len <= cap as isize / 4 { self.inner.resize(cap / 2); } } return Steal::Data(data); } Steal::Retry } /// Creates a stealer that can be shared with other threads. /// /// # Examples /// /// ``` /// use crossbeam_deque::{Deque, Steal}; /// use std::thread; /// /// let d = Deque::new(); /// d.push(1); /// d.push(2); /// /// let s = d.stealer(); /// /// thread::spawn(move || { /// assert_eq!(s.steal(), Steal::Data(1)); /// }).join().unwrap(); /// ``` pub fn stealer(&self) -> Stealer<T> { Stealer { inner: self.inner.clone(), _marker: PhantomData, } } } impl<T> fmt::Debug for Deque<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Deque {{ ... }}") } } impl<T> Default for Deque<T> { fn default() -> Deque<T> { Deque::new() } } /// A stealer that steals elements from the top of a deque. /// /// The only operation a stealer can do that manipulates the deque is [`steal`]. /// /// Stealers can be cloned in order to create more of them. They also implement `Send` and `Sync` /// so they can be easily shared among multiple threads. /// /// [`steal`]: struct.Stealer.html#method.steal pub struct Stealer<T> { inner: Arc<CachePadded<Inner<T>>>, _marker: PhantomData<*mut ()>, // !Send + !Sync } unsafe impl<T: Send> Send for Stealer<T> {} unsafe impl<T: Send> Sync for Stealer<T> {} impl<T> Stealer<T> { /// Returns `true` if the deque is empty. /// /// # Examples /// /// ``` /// use crossbeam_deque::Deque; /// /// let d = Deque::new(); /// d.push("foo"); /// /// let s = d.stealer(); /// assert!(!d.is_empty()); /// s.steal(); /// assert!(d.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.len() == 0 } /// Returns the number of elements in the deque. /// /// # Examples /// /// ``` /// use crossbeam_deque::Deque; /// /// let d = Deque::new(); /// let s = d.stealer(); /// d.push('a'); /// d.push('b'); /// d.push('c'); /// assert_eq!(s.len(), 3); /// ``` pub fn len(&self) -> usize { let t = self.inner.top.load(Relaxed); atomic::fence(SeqCst); let b = self.inner.bottom.load(Relaxed); std::cmp::max(b.wrapping_sub(t), 0) as usize } /// Steals an element from the top of the deque. /// /// Unlike most methods in concurrent data structures, if another operation gets in the way /// while attempting to steal data, this method will return immediately with [`Steal::Retry`] /// instead of retrying. /// /// This method will not attempt to resize the internal buffer. /// /// # Examples /// /// ``` /// use crossbeam_deque::{Deque, Steal}; /// /// let d = Deque::new(); /// let s = d.stealer(); /// d.push(1); /// d.push(2); /// /// // Attempt to steal an element, but keep retrying if we get `Retry`. /// loop { /// match d.steal() { /// Steal::Empty => panic!("should steal something"), /// Steal::Data(data) => { /// assert_eq!(data, 1); /// break; /// } /// Steal::Retry => {} /// } /// } /// ``` /// /// [`Steal::Retry`]: enum.Steal.html#variant.Retry pub fn steal(&self) -> Steal<T> { // Load the top. let t = self.inner.top.load(Acquire); // A SeqCst fence is needed here. // If the current thread is already pinned (reentrantly), we must manually issue the fence. // Otherwise, the following pinning will issue the fence anyway, so we don't have to. if epoch::is_pinned() { atomic::fence(SeqCst); } let guard = &epoch::pin(); // Load the bottom. let b = self.inner.bottom.load(Acquire); // Is the deque empty? if b.wrapping_sub(t) <= 0 { return Steal::Empty; } // Load the buffer and read the value at the top. let buf = self.inner.buffer.load(Acquire, guard); let value = unsafe { buf.deref().read(t) }; // Try incrementing the top to steal the value. if self.inner .top .compare_exchange(t, t.wrapping_add(1), SeqCst, Relaxed) .is_ok() { return Steal::Data(value); } // We didn't steal this value, forget it. mem::forget(value); Steal::Retry } } impl<T> Clone for Stealer<T> { /// Creates another stealer. fn clone(&self) -> Stealer<T> { Stealer { inner: self.inner.clone(), _marker: PhantomData, } } } impl<T> fmt::Debug for Stealer<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Stealer {{ ... }}") } } #[cfg(test)] mod tests { extern crate rand; use std::sync::{Arc, Mutex}; use std::sync::atomic::{AtomicBool, AtomicUsize}; use std::sync::atomic::Ordering::SeqCst; use std::thread; use epoch; use self::rand::Rng; use super::{Deque, Steal}; #[test] fn smoke() { let d = Deque::new(); let s = d.stealer(); assert_eq!(d.pop(), None); assert_eq!(s.steal(), Steal::Empty); assert_eq!(d.len(), 0); assert_eq!(s.len(), 0); d.push(1); assert_eq!(d.len(), 1); assert_eq!(s.len(), 1); assert_eq!(d.pop(), Some(1)); assert_eq!(d.pop(), None); assert_eq!(s.steal(), Steal::Empty); assert_eq!(d.len(), 0); assert_eq!(s.len(), 0); d.push(2); assert_eq!(s.steal(), Steal::Data(2)); assert_eq!(s.steal(), Steal::Empty); assert_eq!(d.pop(), None); d.push(3); d.push(4); d.push(5); assert_eq!(d.steal(), Steal::Data(3)); assert_eq!(s.steal(), Steal::Data(4)); assert_eq!(d.steal(), Steal::Data(5)); assert_eq!(d.steal(), Steal::Empty); } #[test] fn steal_push() { const STEPS: usize = 50_000; let d = Deque::new(); let s = d.stealer(); let t = thread::spawn(move || for i in 0..STEPS { loop { if let Steal::Data(v) = s.steal() { assert_eq!(i, v); break; } } }); for i in 0..STEPS { d.push(i); } t.join().unwrap(); } #[test] fn stampede() { const COUNT: usize = 50_000; let d = Deque::new(); for i in 0..COUNT { d.push(Box::new(i + 1)); } let remaining = Arc::new(AtomicUsize::new(COUNT)); let threads = (0..8) .map(|_| { let s = d.stealer(); let remaining = remaining.clone(); thread::spawn(move || { let mut last = 0; while remaining.load(SeqCst) > 0 { if let Steal::Data(x) = s.steal() { assert!(last < *x); last = *x; remaining.fetch_sub(1, SeqCst); } } }) }) .collect::<Vec<_>>(); let mut last = COUNT + 1; while remaining.load(SeqCst) > 0 { if let Some(x) = d.pop() { assert!(last > *x); last = *x; remaining.fetch_sub(1, SeqCst); } } for t in threads { t.join().unwrap(); } } fn run_stress() { const COUNT: usize = 50_000; let d = Deque::new(); let done = Arc::new(AtomicBool::new(false)); let hits = Arc::new(AtomicUsize::new(0)); let threads = (0..8) .map(|_| { let s = d.stealer(); let done = done.clone(); let hits = hits.clone(); thread::spawn(move || while !done.load(SeqCst) { if let Steal::Data(_) = s.steal() { hits.fetch_add(1, SeqCst); } }) }) .collect::<Vec<_>>(); let mut rng = rand::thread_rng(); let mut expected = 0; while expected < COUNT { if rng.gen_range(0, 3) == 0 { if d.pop().is_some() { hits.fetch_add(1, SeqCst); } } else { d.push(expected); expected += 1; } } while hits.load(SeqCst) < COUNT { if d.pop().is_some() { hits.fetch_add(1, SeqCst); } } done.store(true, SeqCst); for t in threads { t.join().unwrap(); } } #[test] fn stress() { run_stress(); } #[test] fn stress_pinned() { let _guard = epoch::pin(); run_stress(); } #[test] fn no_starvation() { const COUNT: usize = 50_000; let d = Deque::new(); let done = Arc::new(AtomicBool::new(false)); let (threads, hits): (Vec<_>, Vec<_>) = (0..8) .map(|_| { let s = d.stealer(); let done = done.clone(); let hits = Arc::new(AtomicUsize::new(0)); let t = { let hits = hits.clone(); thread::spawn(move || while !done.load(SeqCst) { if let Steal::Data(_) = s.steal() { hits.fetch_add(1, SeqCst); } }) }; (t, hits) }) .unzip(); let mut rng = rand::thread_rng(); let mut my_hits = 0; loop { for i in 0..rng.gen_range(0, COUNT) { if rng.gen_range(0, 3) == 0 && my_hits == 0 { if d.pop().is_some() { my_hits += 1; } } else { d.push(i); } } if my_hits > 0 && hits.iter().all(|h| h.load(SeqCst) > 0) { break; } } done.store(true, SeqCst); for t in threads { t.join().unwrap(); } } #[test] fn destructors() { const COUNT: usize = 50_000; struct Elem(usize, Arc<Mutex<Vec<usize>>>); impl Drop for Elem { fn drop(&mut self) { self.1.lock().unwrap().push(self.0); } } let d = Deque::new(); let dropped = Arc::new(Mutex::new(Vec::new())); let remaining = Arc::new(AtomicUsize::new(COUNT)); for i in 0..COUNT { d.push(Elem(i, dropped.clone())); } let threads = (0..8) .map(|_| { let s = d.stealer(); let remaining = remaining.clone(); thread::spawn(move || for _ in 0..1000 { if let Steal::Data(_) = s.steal() { remaining.fetch_sub(1, SeqCst); } }) }) .collect::<Vec<_>>(); for _ in 0..1000 { if d.pop().is_some() { remaining.fetch_sub(1, SeqCst); } } for t in threads { t.join().unwrap(); } let rem = remaining.load(SeqCst); assert!(rem > 0); assert_eq!(d.len(), rem); { let mut v = dropped.lock().unwrap(); assert_eq!(v.len(), COUNT - rem); v.clear(); } drop(d); { let mut v = dropped.lock().unwrap(); assert_eq!(v.len(), rem); v.sort(); for pair in v.windows(2) { assert_eq!(pair[0] + 1, pair[1]); } } } }