1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
use ::{ExitHandler, PanicHandler, StartHandler, ThreadPoolBuilder, ThreadPoolBuildError, ErrorKind}; use crossbeam_deque::{Deque, Steal, Stealer}; use job::{JobRef, StackJob}; #[cfg(rayon_unstable)] use job::Job; #[cfg(rayon_unstable)] use internal::task::Task; use latch::{LatchProbe, Latch, CountLatch, LockLatch, SpinLatch, TickleLatch}; use log::Event::*; use sleep::Sleep; use std::any::Any; use std::cell::Cell; use std::collections::hash_map::DefaultHasher; use std::hash::Hasher; use std::sync::{Arc, Mutex, Once, ONCE_INIT}; use std::sync::atomic::{AtomicUsize, ATOMIC_USIZE_INIT, Ordering}; use std::thread; use std::mem; use std::usize; use unwind; use util::leak; pub struct Registry { thread_infos: Vec<ThreadInfo>, state: Mutex<RegistryState>, sleep: Sleep, job_uninjector: Stealer<JobRef>, panic_handler: Option<Box<PanicHandler>>, start_handler: Option<Box<StartHandler>>, exit_handler: Option<Box<ExitHandler>>, // When this latch reaches 0, it means that all work on this // registry must be complete. This is ensured in the following ways: // // - if this is the global registry, there is a ref-count that never // gets released. // - if this is a user-created thread-pool, then so long as the thread-pool // exists, it holds a reference. // - when we inject a "blocking job" into the registry with `ThreadPool::install()`, // no adjustment is needed; the `ThreadPool` holds the reference, and since we won't // return until the blocking job is complete, that ref will continue to be held. // - when `join()` or `scope()` is invoked, similarly, no adjustments are needed. // These are always owned by some other job (e.g., one injected by `ThreadPool::install()`) // and that job will keep the pool alive. terminate_latch: CountLatch, } struct RegistryState { job_injector: Deque<JobRef>, } /// //////////////////////////////////////////////////////////////////////// /// Initialization static mut THE_REGISTRY: Option<&'static Arc<Registry>> = None; static THE_REGISTRY_SET: Once = ONCE_INIT; /// Starts the worker threads (if that has not already happened). If /// initialization has not already occurred, use the default /// configuration. fn global_registry() -> &'static Arc<Registry> { THE_REGISTRY_SET.call_once(|| unsafe { init_registry(ThreadPoolBuilder::new()).unwrap() }); unsafe { THE_REGISTRY.expect("The global thread pool has not been initialized.") } } /// Starts the worker threads (if that has not already happened) with /// the given builder. pub fn init_global_registry(builder: ThreadPoolBuilder) -> Result<&'static Registry, ThreadPoolBuildError> { let mut called = false; let mut init_result = Ok(());; THE_REGISTRY_SET.call_once(|| unsafe { init_result = init_registry(builder); called = true; }); if called { init_result.map(|()| &**global_registry()) } else { Err(ThreadPoolBuildError::new(ErrorKind::GlobalPoolAlreadyInitialized)) } } /// Initializes the global registry with the given builder. /// Meant to be called from within the `THE_REGISTRY_SET` once /// function. Declared `unsafe` because it writes to `THE_REGISTRY` in /// an unsynchronized fashion. unsafe fn init_registry(builder: ThreadPoolBuilder) -> Result<(), ThreadPoolBuildError> { Registry::new(builder).map(|registry| THE_REGISTRY = Some(leak(registry))) } struct Terminator<'a>(&'a Arc<Registry>); impl<'a> Drop for Terminator<'a> { fn drop(&mut self) { self.0.terminate() } } impl Registry { pub fn new(mut builder: ThreadPoolBuilder) -> Result<Arc<Registry>, ThreadPoolBuildError> { let n_threads = builder.get_num_threads(); let breadth_first = builder.get_breadth_first(); let inj_worker = Deque::new(); let inj_stealer = inj_worker.stealer(); let workers: Vec<_> = (0..n_threads) .map(|_| Deque::new()) .collect(); let stealers: Vec<_> = workers.iter().map(|d| d.stealer()).collect(); let registry = Arc::new(Registry { thread_infos: stealers.into_iter() .map(|s| ThreadInfo::new(s)) .collect(), state: Mutex::new(RegistryState::new(inj_worker)), sleep: Sleep::new(), job_uninjector: inj_stealer, terminate_latch: CountLatch::new(), panic_handler: builder.take_panic_handler(), start_handler: builder.take_start_handler(), exit_handler: builder.take_exit_handler(), }); // If we return early or panic, make sure to terminate existing threads. let t1000 = Terminator(®istry); for (index, worker) in workers.into_iter().enumerate() { let registry = registry.clone(); let mut b = thread::Builder::new(); if let Some(name) = builder.get_thread_name(index) { b = b.name(name); } if let Some(stack_size) = builder.get_stack_size() { b = b.stack_size(stack_size); } if let Err(e) = b.spawn(move || unsafe { main_loop(worker, registry, index, breadth_first) }) { return Err(ThreadPoolBuildError::new(ErrorKind::IOError(e))) } } // Returning normally now, without termination. mem::forget(t1000); Ok(registry.clone()) } #[cfg(rayon_unstable)] pub fn global() -> Arc<Registry> { global_registry().clone() } pub fn current() -> Arc<Registry> { unsafe { let worker_thread = WorkerThread::current(); if worker_thread.is_null() { global_registry().clone() } else { (*worker_thread).registry.clone() } } } /// Returns the number of threads in the current registry. This /// is better than `Registry::current().num_threads()` because it /// avoids incrementing the `Arc`. pub fn current_num_threads() -> usize { unsafe { let worker_thread = WorkerThread::current(); if worker_thread.is_null() { global_registry().num_threads() } else { (*worker_thread).registry.num_threads() } } } /// Returns an opaque identifier for this registry. pub fn id(&self) -> RegistryId { // We can rely on `self` not to change since we only ever create // registries that are boxed up in an `Arc` (see `new()` above). RegistryId { addr: self as *const Self as usize } } pub fn num_threads(&self) -> usize { self.thread_infos.len() } pub fn handle_panic(&self, err: Box<Any + Send>) { match self.panic_handler { Some(ref handler) => { // If the customizable panic handler itself panics, // then we abort. let abort_guard = unwind::AbortIfPanic; handler(err); mem::forget(abort_guard); } None => { // Default panic handler aborts. let _ = unwind::AbortIfPanic; // let this drop. } } } /// Waits for the worker threads to get up and running. This is /// meant to be used for benchmarking purposes, primarily, so that /// you can get more consistent numbers by having everything /// "ready to go". pub fn wait_until_primed(&self) { for info in &self.thread_infos { info.primed.wait(); } } /// Waits for the worker threads to stop. This is used for testing /// -- so we can check that termination actually works. #[cfg(test)] pub fn wait_until_stopped(&self) { for info in &self.thread_infos { info.stopped.wait(); } } /// //////////////////////////////////////////////////////////////////////// /// MAIN LOOP /// /// So long as all of the worker threads are hanging out in their /// top-level loop, there is no work to be done. /// Push a job into the given `registry`. If we are running on a /// worker thread for the registry, this will push onto the /// deque. Else, it will inject from the outside (which is slower). pub fn inject_or_push(&self, job_ref: JobRef) { let worker_thread = WorkerThread::current(); unsafe { if !worker_thread.is_null() && (*worker_thread).registry().id() == self.id() { (*worker_thread).push(job_ref); } else { self.inject(&[job_ref]); } } } /// Unsafe: the caller must guarantee that `task` will stay valid /// until it executes. #[cfg(rayon_unstable)] pub unsafe fn submit_task<T>(&self, task: Arc<T>) where T: Task { let task_job = TaskJob::new(task); let task_job_ref = TaskJob::into_job_ref(task_job); return self.inject_or_push(task_job_ref); /// A little newtype wrapper for `T`, just because I did not /// want to implement `Job` for all `T: Task`. struct TaskJob<T: Task> { _data: T } impl<T: Task> TaskJob<T> { fn new(arc: Arc<T>) -> Arc<Self> { // `TaskJob<T>` has the same layout as `T`, so we can safely // tranmsute this `T` into a `TaskJob<T>`. This lets us write our // impls of `Job` for `TaskJob<T>`, making them more restricted. // Since `Job` is a private trait, this is not strictly necessary, // I don't think, but makes me feel better. unsafe { mem::transmute(arc) } } pub fn into_task(this: Arc<TaskJob<T>>) -> Arc<T> { // Same logic as `new()` unsafe { mem::transmute(this) } } unsafe fn into_job_ref(this: Arc<Self>) -> JobRef { let this: *const Self = mem::transmute(this); JobRef::new(this) } } impl<T: Task> Job for TaskJob<T> { unsafe fn execute(this: *const Self) { let this: Arc<Self> = mem::transmute(this); let task: Arc<T> = TaskJob::into_task(this); Task::execute(task); } } } /// Push a job into the "external jobs" queue; it will be taken by /// whatever worker has nothing to do. Use this is you know that /// you are not on a worker of this registry. pub fn inject(&self, injected_jobs: &[JobRef]) { log!(InjectJobs { count: injected_jobs.len() }); { let state = self.state.lock().unwrap(); // It should not be possible for `state.terminate` to be true // here. It is only set to true when the user creates (and // drops) a `ThreadPool`; and, in that case, they cannot be // calling `inject()` later, since they dropped their // `ThreadPool`. assert!(!self.terminate_latch.probe(), "inject() sees state.terminate as true"); for &job_ref in injected_jobs { state.job_injector.push(job_ref); } } self.sleep.tickle(usize::MAX); } fn pop_injected_job(&self, worker_index: usize) -> Option<JobRef> { loop { match self.job_uninjector.steal() { Steal::Empty => return None, Steal::Data(d) => { log!(UninjectedWork { worker: worker_index }); return Some(d); }, Steal::Retry => {}, } } } /// If already in a worker-thread of this registry, just execute `op`. /// Otherwise, inject `op` in this thread-pool. Either way, block until `op` /// completes and return its return value. If `op` panics, that panic will /// be propagated as well. The second argument indicates `true` if injection /// was performed, `false` if executed directly. pub fn in_worker<OP, R>(&self, op: OP) -> R where OP: FnOnce(&WorkerThread, bool) -> R + Send, R: Send { unsafe { let worker_thread = WorkerThread::current(); if worker_thread.is_null() { self.in_worker_cold(op) } else if (*worker_thread).registry().id() != self.id() { self.in_worker_cross(&*worker_thread, op) } else { // Perfectly valid to give them a `&T`: this is the // current thread, so we know the data structure won't be // invalidated until we return. op(&*worker_thread, false) } } } #[cold] unsafe fn in_worker_cold<OP, R>(&self, op: OP) -> R where OP: FnOnce(&WorkerThread, bool) -> R + Send, R: Send { // This thread isn't a member of *any* thread pool, so just block. debug_assert!(WorkerThread::current().is_null()); let job = StackJob::new(|injected| { let worker_thread = WorkerThread::current(); assert!(injected && !worker_thread.is_null()); op(&*worker_thread, true) }, LockLatch::new()); self.inject(&[job.as_job_ref()]); job.latch.wait(); job.into_result() } #[cold] unsafe fn in_worker_cross<OP, R>(&self, current_thread: &WorkerThread, op: OP) -> R where OP: FnOnce(&WorkerThread, bool) -> R + Send, R: Send { // This thread is a member of a different pool, so let it process // other work while waiting for this `op` to complete. debug_assert!(current_thread.registry().id() != self.id()); let latch = TickleLatch::new(SpinLatch::new(), ¤t_thread.registry().sleep); let job = StackJob::new(|injected| { let worker_thread = WorkerThread::current(); assert!(injected && !worker_thread.is_null()); op(&*worker_thread, true) }, latch); self.inject(&[job.as_job_ref()]); current_thread.wait_until(&job.latch); job.into_result() } /// Increment the terminate counter. This increment should be /// balanced by a call to `terminate`, which will decrement. This /// is used when spawning asynchronous work, which needs to /// prevent the registry from terminating so long as it is active. /// /// Note that blocking functions such as `join` and `scope` do not /// need to concern themselves with this fn; their context is /// responsible for ensuring the current thread-pool will not /// terminate until they return. /// /// The global thread-pool always has an outstanding reference /// (the initial one). Custom thread-pools have one outstanding /// reference that is dropped when the `ThreadPool` is dropped: /// since installing the thread-pool blocks until any joins/scopes /// complete, this ensures that joins/scopes are covered. /// /// The exception is `::spawn()`, which can create a job outside /// of any blocking scope. In that case, the job itself holds a /// terminate count and is responsible for invoking `terminate()` /// when finished. pub fn increment_terminate_count(&self) { self.terminate_latch.increment(); } /// Signals that the thread-pool which owns this registry has been /// dropped. The worker threads will gradually terminate, once any /// extant work is completed. pub fn terminate(&self) { self.terminate_latch.set(); self.sleep.tickle(usize::MAX); } } #[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)] pub struct RegistryId { addr: usize } impl RegistryState { pub fn new(job_injector: Deque<JobRef>) -> RegistryState { RegistryState { job_injector: job_injector, } } } struct ThreadInfo { /// Latch set once thread has started and we are entering into the /// main loop. Used to wait for worker threads to become primed, /// primarily of interest for benchmarking. primed: LockLatch, /// Latch is set once worker thread has completed. Used to wait /// until workers have stopped; only used for tests. stopped: LockLatch, /// the "stealer" half of the worker's deque stealer: Stealer<JobRef>, } impl ThreadInfo { fn new(stealer: Stealer<JobRef>) -> ThreadInfo { ThreadInfo { primed: LockLatch::new(), stopped: LockLatch::new(), stealer: stealer, } } } /// //////////////////////////////////////////////////////////////////////// /// WorkerThread identifiers pub struct WorkerThread { /// the "worker" half of our local deque worker: Deque<JobRef>, index: usize, /// are these workers configured to steal breadth-first or not? breadth_first: bool, /// A weak random number generator. rng: XorShift64Star, registry: Arc<Registry>, } // This is a bit sketchy, but basically: the WorkerThread is // allocated on the stack of the worker on entry and stored into this // thread local variable. So it will remain valid at least until the // worker is fully unwound. Using an unsafe pointer avoids the need // for a RefCell<T> etc. thread_local! { static WORKER_THREAD_STATE: Cell<*const WorkerThread> = Cell::new(0 as *const WorkerThread) } impl WorkerThread { /// Gets the `WorkerThread` index for the current thread; returns /// NULL if this is not a worker thread. This pointer is valid /// anywhere on the current thread. #[inline] pub fn current() -> *const WorkerThread { WORKER_THREAD_STATE.with(|t| t.get()) } /// Sets `self` as the worker thread index for the current thread. /// This is done during worker thread startup. unsafe fn set_current(thread: *const WorkerThread) { WORKER_THREAD_STATE.with(|t| { assert!(t.get().is_null()); t.set(thread); }); } /// Returns the registry that owns this worker thread. pub fn registry(&self) -> &Arc<Registry> { &self.registry } /// Our index amongst the worker threads (ranges from `0..self.num_threads()`). #[inline] pub fn index(&self) -> usize { self.index } #[inline] pub unsafe fn push(&self, job: JobRef) { self.worker.push(job); self.registry.sleep.tickle(self.index); } #[inline] pub fn local_deque_is_empty(&self) -> bool { self.worker.len() == 0 } /// Attempts to obtain a "local" job -- typically this means /// popping from the top of the stack, though if we are configured /// for breadth-first execution, it would mean dequeuing from the /// bottom. #[inline] pub unsafe fn take_local_job(&self) -> Option<JobRef> { if !self.breadth_first { self.worker.pop() } else { loop { match self.worker.steal() { Steal::Empty => return None, Steal::Data(d) => return Some(d), Steal::Retry => {}, } } } } /// Wait until the latch is set. Try to keep busy by popping and /// stealing tasks as necessary. #[inline] pub unsafe fn wait_until<L: LatchProbe + ?Sized>(&self, latch: &L) { log!(WaitUntil { worker: self.index }); if !latch.probe() { self.wait_until_cold(latch); } } #[cold] unsafe fn wait_until_cold<L: LatchProbe + ?Sized>(&self, latch: &L) { // the code below should swallow all panics and hence never // unwind; but if something does wrong, we want to abort, // because otherwise other code in rayon may assume that the // latch has been signaled, and that can lead to random memory // accesses, which would be *very bad* let abort_guard = unwind::AbortIfPanic; let mut yields = 0; while !latch.probe() { // Try to find some work to do. We give preference first // to things in our local deque, then in other workers // deques, and finally to injected jobs from the // outside. The idea is to finish what we started before // we take on something new. if let Some(job) = self.take_local_job() .or_else(|| self.steal()) .or_else(|| self.registry.pop_injected_job(self.index)) { yields = self.registry.sleep.work_found(self.index, yields); self.execute(job); } else { yields = self.registry.sleep.no_work_found(self.index, yields); } } // If we were sleepy, we are not anymore. We "found work" -- // whatever the surrounding thread was doing before it had to // wait. self.registry.sleep.work_found(self.index, yields); log!(LatchSet { worker: self.index }); mem::forget(abort_guard); // successful execution, do not abort } pub unsafe fn execute(&self, job: JobRef) { job.execute(); // Subtle: executing this job will have `set()` some of its // latches. This may mean that a sleepy (or sleeping) worker // can now make progress. So we have to tickle them to let // them know. self.registry.sleep.tickle(self.index); } /// Try to steal a single job and return it. /// /// This should only be done as a last resort, when there is no /// local work to do. unsafe fn steal(&self) -> Option<JobRef> { // we only steal when we don't have any work to do locally debug_assert!(self.worker.pop().is_none()); // otherwise, try to steal let num_threads = self.registry.thread_infos.len(); if num_threads <= 1 { return None; } let start = self.rng.next_usize(num_threads); (start .. num_threads) .chain(0 .. start) .filter(|&i| i != self.index) .filter_map(|victim_index| { let victim = &self.registry.thread_infos[victim_index]; loop { match victim.stealer.steal() { Steal::Empty => return None, Steal::Data(d) => { log!(StoleWork { worker: self.index, victim: victim_index }); return Some(d); }, Steal::Retry => {}, } } }) .next() } } /// //////////////////////////////////////////////////////////////////////// unsafe fn main_loop(worker: Deque<JobRef>, registry: Arc<Registry>, index: usize, breadth_first: bool) { let worker_thread = WorkerThread { worker: worker, breadth_first: breadth_first, index: index, rng: XorShift64Star::new(), registry: registry.clone(), }; WorkerThread::set_current(&worker_thread); // let registry know we are ready to do work registry.thread_infos[index].primed.set(); // Worker threads should not panic. If they do, just abort, as the // internal state of the threadpool is corrupted. Note that if // **user code** panics, we should catch that and redirect. let abort_guard = unwind::AbortIfPanic; // Inform a user callback that we started a thread. if let Some(ref handler) = registry.start_handler { let registry = registry.clone(); match unwind::halt_unwinding(|| handler(index)) { Ok(()) => { } Err(err) => { registry.handle_panic(err); } } } worker_thread.wait_until(®istry.terminate_latch); // Should not be any work left in our queue. debug_assert!(worker_thread.take_local_job().is_none()); // let registry know we are done registry.thread_infos[index].stopped.set(); // Normal termination, do not abort. mem::forget(abort_guard); // Inform a user callback that we exited a thread. if let Some(ref handler) = registry.exit_handler { let registry = registry.clone(); match unwind::halt_unwinding(|| handler(index)) { Ok(()) => { } Err(err) => { registry.handle_panic(err); } } // We're already exiting the thread, there's nothing else to do. } } /// If already in a worker-thread, just execute `op`. Otherwise, /// execute `op` in the default thread-pool. Either way, block until /// `op` completes and return its return value. If `op` panics, that /// panic will be propagated as well. The second argument indicates /// `true` if injection was performed, `false` if executed directly. pub fn in_worker<OP, R>(op: OP) -> R where OP: FnOnce(&WorkerThread, bool) -> R + Send, R: Send { unsafe { let owner_thread = WorkerThread::current(); if !owner_thread.is_null() { // Perfectly valid to give them a `&T`: this is the // current thread, so we know the data structure won't be // invalidated until we return. op(&*owner_thread, false) } else { global_registry().in_worker_cold(op) } } } /// [xorshift*] is a fast pseudorandom number generator which will /// even tolerate weak seeding, as long as it's not zero. /// /// [xorshift*]: https://en.wikipedia.org/wiki/Xorshift#xorshift* struct XorShift64Star { state: Cell<u64>, } impl XorShift64Star { fn new() -> Self { // Any non-zero seed will do -- this uses the hash of a global counter. let mut seed = 0; while seed == 0 { let mut hasher = DefaultHasher::new(); static COUNTER: AtomicUsize = ATOMIC_USIZE_INIT; hasher.write_usize(COUNTER.fetch_add(1, Ordering::Relaxed)); seed = hasher.finish(); } XorShift64Star { state: Cell::new(seed), } } fn next(&self) -> u64 { let mut x = self.state.get(); debug_assert_ne!(x, 0); x ^= x >> 12; x ^= x << 25; x ^= x >> 27; self.state.set(x); x.wrapping_mul(0x2545_f491_4f6c_dd1d) } /// Return a value from `0..n`. fn next_usize(&self, n: usize) -> usize { (self.next() % n as u64) as usize } }